National Repository of Grey Literature 4 records found  Search took 0.01 seconds. 
Concept of Fast Charging Station with Accumulation for Electric Vehicles
Miškovský, Ján ; Morávek, Jan (referee) ; Mastný, Petr (advisor)
Main purpose of the thesis is the creation of a concept a fast-charging station associated with accumulation that uses renewable source. The introduction of the thesis describes a standard that specifies the charge of electric vehicles using direct and alternating current as well. It depicts an overview of using charging connectors. The first part also deals with overview of the technology of renewable sources and exploitation energy storage system for charging station. The second part introduces the theoretical basement for mathematical model of the charging station in Matlab/Simulink. The function of model station is verified by a physical laboratory model. For options verification of the connection station to the distribution net is created simulation of voltage losses in Matlab/Simulink. The thesis shows four 24 hours’ scenarios that have been simulated. According to the assumptions of simulation, the technology of station and connecting component is suggested. Next is the designed energy and financial analysis of the project charging station until 2030.
Photovoltaic System Proposal for Commercial Building in Accordance with Applicable Rules for Energy Savings Program
Zeman, Daniel ; Vrána, Michal (referee) ; Mastný, Petr (advisor)
Main purpose of the thesis is to create proposal of the photovoltaic hybrid system for commercial building in accordance with applicable rules for energy savings program. The introductory part of the thesis describes the rules regarding the photovoltaic system parts. The next part of the thesis describes the available technical solution for realization of the photovoltaic system design and the possibilities of electric energy accumulation in these systems and how to deal with power overflows using the power flow controller and what is the negative impacts on the distribution network when switching the connected load. In the next part the design of the PV system is carried out according to the valid assumptions described in the theoretical part of the thesis. Verification of power flow controller and measurement results in UEEN laboratories. The last part of the thesis is an evaluation of the economic part of the proposed system.
Photovoltaic System Proposal for Commercial Building in Accordance with Applicable Rules for Energy Savings Program
Zeman, Daniel ; Vrána, Michal (referee) ; Mastný, Petr (advisor)
Main purpose of the thesis is to create proposal of the photovoltaic hybrid system for commercial building in accordance with applicable rules for energy savings program. The introductory part of the thesis describes the rules regarding the photovoltaic system parts. The next part of the thesis describes the available technical solution for realization of the photovoltaic system design and the possibilities of electric energy accumulation in these systems and how to deal with power overflows using the power flow controller and what is the negative impacts on the distribution network when switching the connected load. In the next part the design of the PV system is carried out according to the valid assumptions described in the theoretical part of the thesis. Verification of power flow controller and measurement results in UEEN laboratories. The last part of the thesis is an evaluation of the economic part of the proposed system.
Concept of Fast Charging Station with Accumulation for Electric Vehicles
Miškovský, Ján ; Morávek, Jan (referee) ; Mastný, Petr (advisor)
Main purpose of the thesis is the creation of a concept a fast-charging station associated with accumulation that uses renewable source. The introduction of the thesis describes a standard that specifies the charge of electric vehicles using direct and alternating current as well. It depicts an overview of using charging connectors. The first part also deals with overview of the technology of renewable sources and exploitation energy storage system for charging station. The second part introduces the theoretical basement for mathematical model of the charging station in Matlab/Simulink. The function of model station is verified by a physical laboratory model. For options verification of the connection station to the distribution net is created simulation of voltage losses in Matlab/Simulink. The thesis shows four 24 hours’ scenarios that have been simulated. According to the assumptions of simulation, the technology of station and connecting component is suggested. Next is the designed energy and financial analysis of the project charging station until 2030.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.